

Expectations of the Research Councils & other major funders

Dr Frances Rawle

Head of Corporate Governance & Policy

Medical Research Council

More Rs

- Reproducibility, Rigour and Reliability
- Research Integrity
- Responsibility in the use of animals in research

A high profile issue

- Many papers about lack of reproducibility
- A key issue for translation and preclinical research
- Also important for public perception & trust in science

OCTOBER 19TH-25TH 2013

Economist.com

Britain's angry white men How to do a nuclear deal with Iran **Investment tips from Nobel economists** Junk bonds are back The meaning of Sachin Tendulkar

Why does it matter?

- Integrity of the scientific record
- Translation and demonstrating impact
- Accountability effective use of (public) money
- Building and maintaining trust in science and research
- Making the case for investment in science

Reproducibility and the conduct of research

Data dredging

Also known as p-hacking, this involves repeatedly searching a dataset or trying alternative analyses until a 'significant' result is found

Omitting null results

When scientists or journals decide not to publish studies unless results are statistically significant.

Underpowered study

Statistical power is the ability of an analysis to detect an effect, if the effect exists – an underpowered study is too small to reliably indicate whether or not an effect exists

Errors

Technical errors may exist within a study, such as misidentified reagents or computational errors.

Underspecified methods

A study may be very robust, but its methods not shared with other scientists in enough detail, so others cannot precisely replicate it.

Weak experimental design

A study may have one or more methodological flaws that mean it is unlikely to produce reliable or valid results.

Multiple contributing factors

- poor experimental design
- inappropriate statistical analysis
- poor quality control
- incomplete reporting and publication bias
- competition & pressure to publish
- inadequate training & supervision

System-wide approach needed

- Funders
- Research institutions
- Academies
- Publishers
- Individual researchers at all levels

What can funders do?

- Policies and guidance
- Improve peer review
- Greater emphasis on methodology in funding applications
- Support for statistics and experimental design
- Promote data sharing and open science
- Promote high-quality reporting
- Promote better education and training
- Support resources

UK Research integrity concordat

5 commitments

- Maintaining highest standards of rigour & integrity
- Ensuring research is conducted according to appropriate ethical, legal & professional frameworks & standards
- Supporting a culture of integrity, good governance, best practice & researcher development
- Transparent & fair processes to deal with misconduct allegations
- Working together to strengthen integrity & regularly reviewing progress

Good Research Practice guidance

- Focuses on encouraging good practice planning and carrying out trustworthy and ethical research which others can build on
- Covers all stages of research, from planning to publication
- Addresses both research misconduct and reproducibility by promoting a culture of:
 - Personal integrity
 - Honesty
 - Professionalism

Good Research Practice Guidance (2)

- Identify and manage conflicts of interest
- Availability of appropriate training and supervision
- Support for good experimental design and statistics
- Good data management (including long-term retention/archiving/sharing policies)
- Collaborative working: the importance of clarifying responsibilities and expectations
- Availability and awareness of ethical review mechanisms for research involving people & animals.
- Fair peer review

Expectations for animal research

MRC Working Group 2012-13

Board & Panel Members including: Laboratory (animal) researchers, epidemiologists, methodologists, statisticians

REMIT

- Identify concerns about the quality of information provided, particularly with regard to
 - Experimental design
 - Planned statistical analyses
 - Justification for the species and number of animals
- Determine whether referees assess these aspects
- Recommend changes to the guidance for applicants, peer-reviewers and boards
- Publicise the revised guidance to fellow board and panel members
- Review the impact of the revised guidance at subsequent triage and board rounds

Appraisal results

(68 applications)

Generally well justified:

- Need to use animals
- Model chosen
- Experimental rationale and planned design

Generally poorly described/justified:

- Choice of sample size (clear in just over 50% [64% awarded])
- Proposed statistical analyses (clear in 36%)
- Plans to minimise experimental bias (clear in only 11%)

Guidance for Applicants and Award Holders 2014

8. Special considerations

- 8.1 Clinical Staff
- 8.2 Use of Animals
 - 8.2.1 Replacement, Reduction, and Refinement of Animal Experiments
 - 8.2.2 Proposals Involving Animal Use
 - 8.2.3 Experimental design, avoidance of bias and statistical considerations
 - 8.2.4 Peer Review
 - 8.2.4.1 Je-S section on 'Animal Research'
 - 8.2.4.2 Je-S section on 'Animal Species'
 - 8.2.4.3 Proposal attachment 'Case for Support'
 - 8.2.4.4 Je-S section on 'Resources Animal costs'
 - 8.2.4.5 Proposal attachment 'Justification of Resources
 - 8.2.5 Ethical and welfare standards and review
 - 8.2.6 Home Office Licences
 - 8.2.7 Mouse Strains
 - 8.2.8 Justification of Animal Use

Example of design and statistical issues to be addressed in animal research proposals

- the avoidance of bias (for example blinding of observers);
- how randomisation will be carried out (or why it is not appropriate)
- a clear definition of the experimental unit in the analysis;
- a justification of the adequacy of the numbers of animals (e.g. power calculation)
- the number of different time points at which measurements will be made on each animal
- a description of the statistical analysis methods & how they relate to the experimental design
- an indication of the number of independent replications of each experiment.

Actions to date

- Strengthened guidance for applicants and peer reviewers
- More space in applications for methodological detail
- Training for Board and Panel members
- RCUK "Statement of expectations for Doctoral Training" now includes training in statistics, experimental design and reproducibility
- Survey of MRC PhD students and Graduate Training leads
- UK Concordat on Open Research Data

Things to think about

- How do we demonstrate we value reproducible and valid results over novelty?
- How can we promote publication of null/negative results?
- Promoting and valuing data sharing/openness
- Improving support & training in experimental design and statistics

Questions/Comments?

(Contact: frances.rawle@headoffice.mrc.ac.uk)